Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface

Identifieur interne : 000C66 ( Main/Repository ); précédent : 000C65; suivant : 000C67

Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface

Auteurs : RBID : Pascal:13-0158789

Descripteurs français

English descriptors

Abstract

Controlled modulation of diameter along the axis of nanowires can enhance nanowire-based device functionality, but the potential for achieving such structures with arbitriry diameter ratios has not been explored. Here, we use a theoretical approach that considers changes in the volume, wetting angle, and three-dimensional morphology of seed particles during nanowire growth to understand and guide nanowire diameter modulation. We use our experimental results from diameter-modulated InN and GaN nanowires and extend our analysis to consider the potential and limitarions for diameter modulation in other materials systems. We show that significant diameter modulations can be promoted tor seed materials that enable substantial compositional and surface energy changes. Furthermore, we apply our model to provide insights into the morphology of the liquid/solid interface. Our approach can be used to understand and guide nanowire diameter modulation, as well as probe fundamental phenomena during nanowire growth.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0158789

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface</title>
<author>
<name sortKey="Crawford, Sam" uniqKey="Crawford S">Sam Crawford</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02143</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lim, Sung Keun" uniqKey="Lim S">Sung Keun Lim</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02143</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gradecak, Silvija" uniqKey="Gradecak S">Silvija Gradecak</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02143</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0158789</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0158789 INIST</idno>
<idno type="RBID">Pascal:13-0158789</idno>
<idno type="wicri:Area/Main/Corpus">000F30</idno>
<idno type="wicri:Area/Main/Repository">000C66</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystal seeds</term>
<term>Experimental result</term>
<term>Gallium nitride</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Liquid solid interface</term>
<term>Morphology</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowire device</term>
<term>Nanowires</term>
<term>Solidification front</term>
<term>Surface energy</term>
<term>Wettability</term>
<term>Wetting</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Interface liquide solide</term>
<term>Front solidification</term>
<term>Dispositif nanofil</term>
<term>Mouillage</term>
<term>Mouillabilité</term>
<term>Morphologie</term>
<term>Germe cristallin</term>
<term>Synthèse nanomatériau</term>
<term>Résultat expérimental</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Energie surface</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>InN</term>
<term>GaN</term>
<term>8107V</term>
<term>8107B</term>
<term>8535K</term>
<term>6808B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Controlled modulation of diameter along the axis of nanowires can enhance nanowire-based device functionality, but the potential for achieving such structures with arbitriry diameter ratios has not been explored. Here, we use a theoretical approach that considers changes in the volume, wetting angle, and three-dimensional morphology of seed particles during nanowire growth to understand and guide nanowire diameter modulation. We use our experimental results from diameter-modulated InN and GaN nanowires and extend our analysis to consider the potential and limitarions for diameter modulation in other materials systems. We show that significant diameter modulations can be promoted tor seed materials that enable substantial compositional and surface energy changes. Furthermore, we apply our model to provide insights into the morphology of the liquid/solid interface. Our approach can be used to understand and guide nanowire diameter modulation, as well as probe fundamental phenomena during nanowire growth.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CRAWFORD (Sam)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIM (Sung Keun)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GRADECAK (Silvija)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02143</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>226-232</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000173269440390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0158789</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Controlled modulation of diameter along the axis of nanowires can enhance nanowire-based device functionality, but the potential for achieving such structures with arbitriry diameter ratios has not been explored. Here, we use a theoretical approach that considers changes in the volume, wetting angle, and three-dimensional morphology of seed particles during nanowire growth to understand and guide nanowire diameter modulation. We use our experimental results from diameter-modulated InN and GaN nanowires and extend our analysis to consider the potential and limitarions for diameter modulation in other materials systems. We show that significant diameter modulations can be promoted tor seed materials that enable substantial compositional and surface energy changes. Furthermore, we apply our model to provide insights into the morphology of the liquid/solid interface. Our approach can be used to understand and guide nanowire diameter modulation, as well as probe fundamental phenomena during nanowire growth.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H45G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Interface liquide solide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Liquid solid interface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Interfase líquido sólido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Front solidification</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solidification front</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Frente solidificación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dispositif nanofil</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanowire device</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dispositivo nanohilo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mouillage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Wetting</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Mouillabilité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Wettability</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Germe cristallin</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal seeds</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Résultat expérimental</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Experimental result</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Resultado experimental</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Energie surface</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface energy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8535K</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6808B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0158789
   |texte=   Fundamental Insights into Nanowire Diameter Modulation and the Liquid/Solid Interface
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024